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Selected Research Opportunities (SRO) II
Non-Gaussian Workshop, 7 and 8 April 1981

U.S. Naval Underwater Systems Center
New London Laboratory, New London, CT

Introduction

by D. M. Viccione
Naval Underwater Systems Center
New London, CT

Conventional acoustic and electromagnetic antisubmarine warfare (ASW)
systems are designed to optimally detect the presence of signals in Gaussian
background noise. However, in the electromagnetic environment (EM) high level
directional transient or other structured noise is a familiar problem. Such in-
terferences are typically non-Gaussian. Frequently receiver systems designed for
Gaussian noise backgrounds are seriously degraded in the non-Gaussian en-
vironment. During the past 5 years, considerable attention has been focused on the
(1) problem of characterizing non-Gaussian noise fields and (2) design of EM
detectors (receivers) that operate optimally in such environments.

The necessity of operating acoustic surveillance and communication systems in
typical non-Gaussian noise backgrounds must be anticipated. Such noise may arise
naturally from, for example, oil exploration and drilling in the deep sea, or
deliberately from intentional jamming, such as detonations of high-yield explosives
in ocean basins.

The Office of Naval Research (ONR) has initiated a new feature, the Selected
Research Opportunities (SRO) Program, in its Contract Research Program (CRP).
The SRO Program, like the CRP, is designed to further the goal of improved
national defense over the long term. This is to be accomplished through (1) in-
creased involvement of the academic research community in selected fundamental
research areas and (2) fostering stronger links between this community and the
Navy. One of the research areas in the SRO Program is that of non-Gaussian signal
processing, which offers an opportunity to explore the feasibility and practicality of
designing and developing ASW systems to operate efficiently in non-Gaussian
noise. Generically the issues to be resolved by the non-Gaussian research give rise to
the following objectives:

1. To analyze existing algorithms for worst case situations in the presence of
intentional man-made noise. Nonparametric and robust approaches should be
explored to devise algorithms that perform well regardless of noise source
characteristics.
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2. To investigate techniques for weak signal extraction in the presence of strong
signals; and, as a special case, explore techniques for detecting spread-spectrum
signals, including analysis of changes in noise statistics caused by pseudo-noise
signals.

3. To enlarge the basic mathematical and statistical theory of non-Gaussian
stochastic processes applicable to EM and underwater sound environments.

4. To study non-Gaussian models appropriate for reverberation or rever-
beration-like noise in shallow water.

5. To examine the extent of non-Gaussian sources of impulsive noise in-
terference in underwater acoustic signal processing problems of interest to the
Navy.

6. To overcome shortcomings in existing theories concerning nonwhite in-
terference, nonstationarity of channels and interferences, multipath, dispersion,
Doppler effects, and problems caused by sensor and array flaws.

The workshop, jointly sponsored by ONR and the Naval Underwater Systems
Center (NUSC), was the first to bring together SRO II participants and others in the
processing community who are working in the area of non-Gaussian noise. Sum-
maries of each technical presentation are provided in this document and a list of
participants is included to facilitate communication. The schedule for the
presentation of the papers at the SRO-1I Workshop, held on 7-8 April 1981 at
NUSC New London, CT, follows.

2
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Schedule of the SRO It Non-Gaussian Workshop

Tuesday, 7 April

0900 Welcome W. A. VonWinkle
(NUSC)

0915 Introductory Address E. G. Wegman
(ONR)

0930 The Performance and A. D. Spaulding
Robustness of Suboptimum U.S. Dept. of
and Locally Optimum Commerce (NTIA)
Detectors in Non-Gaussian
Noise

1015 Non-Gaussian Interference D. Middleton
Environments, State of the Consultant
Art Remarks

1100 Performance of the R. F. Ingram
Optimum and Several (NUSC)
Suboptimum Receivers for
Threshold Detection of
Known Signals in Additive,
White, Non-Gaussian Noise

1300 Frequency Tracking and L. Scharf
Parametric Spectrum (Colorado State
Analysis University)

1330 Non-Gaussianity of D. McClovic
Oceanic Internal Waves (Arrete Assoc)

1400 Discussion

Wednesday, 8 April

0830 Acoustic Problems R. F. Dwyer
(NUSC)

0900 Data-Adaptive Principal D. W. Tufts
Component Signal Processing (University of

Rhode Island)

0930 Residual Signal Analysis J. P. Costas
--A Search and Destroy Approach (General Electric
to Spectral Analysis Company)

1015 Optimal Identification of C. L. Hindman
Nonlinearly Transformed (TRW Systems)
Gaussian Processes

1100 General Discussion

L 
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The Performance and Robustness of Suboptimum and
Locally Optimum Detectors in Non-Gaussian Noise

by A. D. Spaulding
U. S Dept. of Commerce (NTIA)
Boulder, CO

Most currently used receiving systems are those that are optimum in Gaussian
noise. Unfortunately, the actual interference environment is almost never Gaussian
in character, but usually quite different, being impulsive in nature. By impulsive, we
mean that there are small probabilities of quite large instantaneous values of noise.
This is a general definition in that there exist both broadband (the usual definition)
and narrowband impulsive processes. When confronted with this real-world in-
terference, the usual procedures were to attempt to change the interference, as seen
by the receiver, to look more Gaussian in character. Such attempts usually em-
ployed various ad hoc nonlinearities preceding the detector. While these are oc-
casionally reasonably effective, they can be extremely wasteful of spectrum space
when normal signal-to-noise ratios are considered. As we will see, these ad hoc
nonlinearities can, under certain conditions, be almost as good as the optimally
derived nonlinearity for the limiting case of a vanishing small signal. (It is believed
that this result may, however, be misleading and it requires further investigation.)

Only recently have there been receiving systems designed to match the actual
interference. These truly optimum systems are usually difficult to realize physically.
It is possible, however, if the desired signal is small, to obtain realizable systems
that approach true optimality. These are generally termed locally optimum. The
receiving systems must be adaptive, adjusting themselves to changing interference
conditions. That is, they must estimate the appropriate parameters for the noise
models from which the system was designed. The design is usually done by
techniques termed locally optimum Bayes detection (LOBD). The parameter
estimation problem is currently being investigated via locally optimum Bayes
estimation (LOBE) (Middleton (to be published)].

It is the purpose of this presentation to investigate the robustness of these locally
optimum systems. That is, we want to determine the degree of accuracy required in
the parameter estimation procedure. For illustration we will use, initially, two
examples of interference, one broadband and one narrowband, and consider the
simplest case of coherent signal detection. The standard LOBD analysis is reviewed
and then used to determine the performance for arbitrary interference with the
detector that is locally optimum for any given interference (our estimate). Of
course, if the actual interference and the estimate are identical, we obtain the
standard results. Next, we study in some detail the two most common ad hoc
nonlinearities (the hard-limiter and the adaptive clipper) to determine their small
signal performance via the LOBD results. Then, we present a series of sample
calculations comparing the performances of the hard-limiter and LOBD

4
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nonlinearities and the robustness (for the narrowband noise example) of the LOBD
nonlinearity. It is suggested that the small signal limiting results, in some cases at
least, may be misleading. We show this by presenting some system performance
results that seem to be contrary to the limiting results (which are obviously true)
when small (but nonzero) signal levels are considered.

The LOBD analysis employed to obtain the robustness results and the com-
parison of performance between LOBD's and various nonlinear ad hoc detectors
requires use of the central limit theorem and are strictly valid only as the signal
becomes vanishingly small. In special cases, the broadband interference model
utilized (Middleton's Class B Noise Model) reduces (approximately) to the
mathematically simpler Hall Noise Model. The analysis is repeated for the Hall
model and performance estimates are obtained for the LOBD and hard-limiter
without resorting to the vanishingly small signal assumption. It is shown that
performance results obtained via the vanishingly small signal assumption are valid,
at least for the special cases considered, as long as the time-bandwidth product is
reasonably large (> 30).

Non-Gaussian Interference Environments,
State-of the-Art Remarks

by D. Middleton
128 East 91st St.
NY, NY

An overview of recent work by the author on non-Gaussian noise models and
threshold signal processing involving non-Gaussian electromagnetic interference
(EMI) is presented here. The principal purpose is to offer a technical update of
results obtained recently, with some of their implications for a quantitative
description of the EMI environment pertinent to Navy uses. Both acoustic and EM
applications would be included. Although a complete overview is not made or
intended, various specialized interests should find appropriate topics of interest
without difficulty.

The current material is compiled from a series of recent presentations by the
author (1980, 1981) in the form of vugraphs. The main topics are

1. construction of analytically tractable non-Gaussian noise models,
2. optimum threshold detection algorithms for non-Gaussian EMI en-

vironments, and
3. evaluation of optimum and suboptimum receiver performance.

The suboptimum receivers considered are optimum in Gaussian noise (e.g.,
correlation detectors that are seen to be very much degraded in highly non-Gaussian
environments). Finally, the critical role of the EMI scenario is discussed, whereby
the parameters of the noise model may be constructed from statistical-physical
consideration and measured empirically.

I 
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Performance of the Optimum and Several Suboptimum
Receivers for Threshold Detec'on of Known Signals
in Additive, White, Non-Gaussian Noise

by R. F. Ingrain
Naval Underwater Systems Center
New London, CT

The additive noise encountered at a receiver input is often non-Gaussian. If the
non-Guassian nature of the noise is taken into account in the design of the receiver,
significant performance improvements relative to the performance of the linear
receiver can be achieved. This presentation discusses the performance im-
provements that can be expected from the optimal and several subpotimal receivers
frequently utilized for detecting known threshold signals in an additive, white, non-
Gaussian noise.

One form of the optimum receiver for detecting known threshold receivers in
additive, white, non-Gaussian noise consists of the receiver that should be utilized if
the noise were Gaussian, except that a nonlinearity is placed between the receiver
input and the Gaussian detector. The input-output characteristic of the nonlinearity
is given by -d/dx(l n p(x)), where p(x) is the I st order probability density function of
the noise alone. The measure of performance improvement obtained by including
the nonlinear device is given by the ratio of the signal-to-noise ratio (SNR) at the
receiver output with and without a nonlinear processor. The magnitude of this
improvement for threshold signals is evaluated using the 1st order probability
density functions resulting from Middleton's Class B Noise Model. The per-
formance of several suboptimal but more easily implemented nonlinearities, i.e.
clipper, hole puncher, and hard limiter, are also evaluated and compared to the
optimal's performance. Finally the performance of these threshold receivers are
evaluated as a function of the receiver input SNR.

6
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Frequency Tracking and Parametric Spectrum Analysis

by L. Scharf
Colorado State University
Department of Electrical Engineering
Ft. Collins, CO

In this presentation we review several key ideas in random phase tracking,
parametric spectrum analysis, and prediction in infinite variance random processes.
It is shown that random phase- and frequency-modulated data may be tracked with
a dynamic programming algorithm that recursively maximizes Bayesian recursions
to generate surviving sequences that ultimately can qualify as maximum likelihood
sequences. The discussion of parametric spectrum analysis focuses on a
parameterized version of the Bartlett and maximum likelihood spectra, and the
performance that can be expected. The discussion of prediction in infinite variance
processes deals with procedures for constructing predictors and whiteners when no
finite prediction error variance is available for minimization.

7
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Non-Gaussianity of Oceanic Internal Waves

by D. McClovic
Arrete'Assoc
P.O. Box 350
Encino, CA

Introduction

The background noise field of concern is the ambient field of interaal waves and
sporadic turbulence. The horizontal scales of these phenomena range from tens of
kilometers to less than the present instrumentation limits (centimeters). The natural
fluctuations in the environment can be conveniently characterized in the form of 1-
D and 2-D displacement spectra.

One-dimensional horizontal displacement spectra obtained at different times and
places in the seasonal thermocline consistently have slopes between -2 and -2.5, with
the latter being more common on the scale of 4-10 m. When the spectral estimates
are averaged over a large (,\10 kin) horizontal extent in a given locale, they exhibit
apparent stability and approximate universality. However, the spectral levels can
vary considerably over horizontal scales of 500 m, even when the data from many
sensors are averaged. Two-dimensionsl displacement spectra have been estimated
from thermistor chain tows and the spectral shapes are in agreement with the
McClovic model, i.e.,

- 5 2 -1/2
1421 ~ C k X (kX X

Examples of the spectra are given in the following figures.

8!
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Surface Waves

T(z)

internal waves

z

Estimate internal wave displacement from temperature
fluctuations T~)

dx =T.(x) - <i

1<dT/dz'.

<T Tim>
<dT/dz> i = - 1-m

Figure 1. Oceanic Internal Waves
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Figure 3. Average Horizontal Power Spectrum of Temperature Displacement
Data (Horizontal Data Patch of 5.26 km; Sample Interval of 1.28 m)
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Figure 4. Test for Gaussianity by Looking at Higher Order Moments
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Figure 6. Spectral Density for the Normalized, Whitened, Bandpassed Power
Averaged Over Depth (4-100 m Band)
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Approach

A model has been formulated to account for the large fluctuation observed in the
displacement data. In particular, a nonlinear temperature profile is used to account
for the degree of non-Gaussianity observed in the temperature fluctuations,
presuming that the internal wave field is Gaussian.

The temperature model is described as follows (see figure 7):

T(x,z) = T (x,-z (x,Z)0

with T and Gaussian processes

0

POSITIVEZ I

zI

I bII7

r I/ Ix. ZIl

IT,o/

-----------TIX. Z

TIEMPRATURE

Figure 7. Temperature Model
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T(x,z) = T(x,z - (x,z))

Look at the whitened temperature:

aT aTo 0 To o
= ax az Txi

Define deviation from linearity

aT aT0
S = < --- > (U + 0), so that

-1 3T
d'(x) = 0w - + (1 + e)€'

High pass d ':d '-.d s'

ds U + eL(x,z-)) + (s ')

where

e =8L + es .

Look at the effect of long scales in 6 on the non-Gaussianity of short scale fluc-
tuations d

ds(x) = 1 +o x)J sx)

assuming OLC5 Gaussian with PSD Pq(k), P4(k).

16
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Acoustic Problems

by R. F. Dwver
Naval Underwater Systems Center
New London, CT

This presentation describes the results of a statistical analysis study of FRAM II
Arctic under ice ambient-noise data. The specific data analyzed were recorded on
23-24 April 1980 from a pack-ice camp in the Arctic Ocean at 860 N latitude, 25 0 W
longitude. At this location, the bottom depth was approximately 4000 m. The
measurement system consisted of a broadband omnidirectional hydrophone
suspended to a depth of 91m from a sonobuoy located in a lead. Under the influence
of Arctic currents, the pack ice was slowly moving. This movement caused rifting
and cracking of ice that occurred, at times, throughtout the experiments and
represented a structured acoustic noise source. Both impulsive and burst noises were
identified in the data and were probably caused by tensile cracks and rubbing ice
masses.

To better understand the statistical properties of under ice ambient noise, the
skew, kurtosis, and cumulative distribution function (CDF) of the data were
estimated. In the time domain, the statistics were estimated in 100-, 350-, and 2500-
Hz bands. At times, the statistical estimates in all bands deviated from Gaussian
noise significantly, and were consistent with previously reported results of ex-
periments made in the Canadian Arctic Archipelago. The estimated energy CDF of
FRAM II data predicted detection thresholds 3 to 10 dB higher than what would be
expected from purely Gaussian phenomena. Spectrum levels and spectrograms were
also measured. The spectrograms depicted dynamic frequency components that
appear, from aural information that sounded like squeaks, to be correlated with ice
dynamics. Comparisons of broadband spectrum level estimates at different times,
indicate nonstationary frequency domain components that also appear to be
correlated with ice dynamics.

Since it was known that burst-noise durations of Arctic under ice noise last from
0.1 to 1/3 s, statistical estimates of frequency domain components were measured.
These frequency domain statistical measurements represent new techniques for
estimating environmental noise phenomena. The complex skew, kurtosis, and CDF
were measured in 1-, 2-, 6-, and 10-Hz resolution cells at the output of a discrete
Fourier transform, employing processing times of 2 to 14 min. These new findings
indicate the existence of strong non-Gaussian noise in the frequency domain.
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Data-Adaptive Principal Component Signal Processing

D. W. Tufts
Department of Electrical Engineering
University of Rhode Island
Kingston, RI

Even the best linear-prediction-based methods for fitting multiple-sinusoid signal
models to observed data, such as the forward-backward methods of Nuttall
(reference 1) and Ulrych and Clayton (reference 2), are ill-conditioned. The
locations of estimated spectral peaks can be greatly affected by additive noise. This
ill-conditioning can be alleviated by singular value decomposition of the linear-
prediction-data matrix. (This is a preliminary version of a presentation to be made
at the First ASSP Workshop on Spectral Estimation, 17-18 August 1981, McMaster
University, Hamilton, Ontario.)
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Residual Signal Analysis--A Search and Destroy
Approach to Spectral Analysis

J.P, Costas
General Electric Co.
Court St. Plant, Syracuse, NY

A signal processing procedure especially suited for use in narrowband spectral
analysis or line tracking applications is presented. A modular approach is employed
that permits each tracker to optimize estimation parameters for the line assigned.
The signal estimate from each module is used to cancel the corresponding signal
from the common bus to which all tracker inputs are connected. A feedback
arrangement around each module restores to each tracker the full level of its
assigned input signal. Thus, each signal being tracked is prevented from causing
interference to any other tracker. The advantages obtained from this arrangement
are demonstrated and discussed.

Optimal Identification of Nonlinearly
Transformed Gaussian Processes

by C. L. Hindman
TR W Defense and Space Systems Group
One Space Park, Los Angeles, CA

In a variety of applications it is necessary to deal with observations of a time
series obtained via an instantaneous nonlinear mapping of an underlying random
variable whose values cannot otherwise be ascertained. In the case where the
nonlinear mapping is known and can be unambiguously inverted, such a com-
plication represents little difficulty. However, in some applications, a priori
knowledge of the intervening nonlinear mapping is either incomplete or altogether
lacking. In such cases any analysis of the underlying random process must be ac-
companied by the identification or, more correctly, the estimation of one or more
features of the nonlinear map or measurement function itself.

This presentation is concerned with the practicalities of this identification
problem in the case where the underlying random process is Gaussian or, rather,
Gauss-Markov in nature and generally exhibits strong serial or time correlation. It is
this factor of time correlation that renders the procedures discussed herein of in-
terest, for in the case of independent observations the determination of the
nonlinear map is essentially equivalent to the estimation of the univariate density
junction of the observations themselves. In the serially correlated case, however, the
most efficient use of the observations will involve simultaneous estimation of the
nonlinear function, as well as the structure of the correlation of the underlying
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process. In this sense the procedure advocated here may be regarded as a general
scheme for fitting nonlinear time series models, albeit the nonlinearity is of a rather
restricted type. A few practical circumstances in which the procedure discussed may
be of value are indicated briefly as follows:

1. Measurement by a sensor of unknown characteristic. When the response of
a sensor is unknown, but one has available sensor measurements of an underlying
random process of known character, then we are confronted with the problem of
identifying both the sensor and estimating the underlying processes simultaneously;
i.e., if y is the sensor output we have

y(t) = h(x(t)), (1. 1)

where h(x) is the sensor response to be determined from the measurements y(t).
2. Indirect determination of internal motion via measurement of an imbeddedIscalar in a stratified medium.To trace the dynamic development of the local fluid

vertical velocity in the thermally stratified atmosphere by means of a time series
temperature measurement at fixed altitude, we hypothesize the measurement
relation

T(t) = To - d (1.2)

where T(t) is the recorded time series of temperature, Z is the sensor altitude, w(t) is
the instantaneous vertical fluid velocity at measurement altitude Z, and T(h) is the
equilibrium or ambient thermal lapse or profile as a function of altitude, which is to
be regarded as unknown except through the measurements T(t).

3. Measurement of concentration fluctuations of reactive species. When two
or more chemically reactive species are randomly distributed in a medium, the
equilibium concentration of species A,CA and another species BCB may be related
via an equilibrium equation of the form

CA = f(C5,6),

where 0 is a set of unknown or incompletely known parameters. When, for instance,

knowledge of CB is desired, but CA is more conveniently measurable, then we must

invert the nonlinear relationship to obtain the CB fluctuation history.

4. Nonlinear time series modeling. In some instances it is useful to simply

assume the existence of an instantaneous functional relationship between an ob-

served series and an underlying hypothetical series even when no justifiable basis for

such a transformation can be advanced. Such ideas are proposed frequently in the

analysis of economic time series when it is desired to transform a given series into

one that possesses more desirable characteristics from the analyst's point of view.

The common underlying feature of these examples is the necessity of determining
the structure of the nonlinear measurement relation. This is done, more or less, on
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the basis of the observations alone in the absence of a priori detailed information
concerning the statistics of the underlying process that generated the measurements
in the first place (e.g., the spectrum or covariances). Since the problem of deter-
mining both the nonlinear transformation and the underlying realization is highly
nonunique, we expect that useful results will be obtainable only when the form, the
general structure, or the probability distribution of the underlying process can be
regarded as given at least approximately. Such will be the assumption made
throughout this presentation; however, we make the observation that, just as the
maximum likelihood estimation of linear Gaussion time series model parameters
has a least squares interpretation even for non-Gaussion distributions, we expect
similar utility and robustness in the present context. This will be true even when the
underlying distribution is not known, so long as minimization of the residual sum of
squares leads to adequate estimation of the covariance structure.

The basic assumptions concerning the nonlinear mapping to be made are of
concern, and here we are guided by practice and intuition. The required basic
features are uniqueness and smoothness. By uniqueness we mean that the
measurements are related to the underlying process in a one to one fashion over the
range of actually observed values. Of course, maps of a more complex structure
could be treated if additional a priori information were available.

Requisite properties of smoothness are somewhat more difficult to define
precisely. Certainly for discrete parameter data the empirical sampling density of
the observations as a function of the observed value must be assumed to be such
that variations of the inverse map g(y) = x (y = h(x)) are not severely aliased if the
behavior of g(y) is to be adequately discerned from the data on hand. For the actual
computational implementation considered, we use the stronger assumption of
continuous piecewise linearity; although in some applications this assumption may
be inappropriate. However, it will emerge that this assumption provides con-
siderable computational advantage, as well as being an appealing choice when the
transformation itself is known or suspected to be comprised of random (and
possibly independent) positive increments in y and x. In such cases smooth
representation such as polynominals, power series, or continuous orthogonal
functions are generally found to be less adequate, as well as more difficult to
manage computationally.

When a more computationally exhaustive search is contemplated, the use of
piecewise linear approximation enjoys the additional advantage of being a suitable
basis for uniform approximation of continuous functions of bounded variation.
Therefore, it appears to be a logical choice for approximating a monotone con-
tinuous function. In this case, the form assumed by the relevant probability func-
tional will also be seen to have the further computational advantage of enabling
direct hypothesis testing on the choice of intervals employed in constructing the
piecewise linear approximation. This allows at least the potential for dealing with
what is usually the most disadvantageous aspect of piecewise linear approximation--
namely, the choice of node points of a discontinous derivative.

The basic procedure advocated in this presentation is the application of the
principle of maximum likelihood to the simultaneous estimation of the nonlinear
map and the statistics (in the Gaussian case) of the underlying process. This
estimator will be seen to embody a criterion of optimality that arises from the
theoretical analysis of the effect of instantaneous nonlinear transformation in the
Gaussian case.
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